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1 Introduction

(0, 2) superconformal field theories (SCFTs) in two dimension occupy a huge landscape of

perturbative heterotic string theories with N = 1 supersymmetric compactifications, yet a

significant portion of the landscape is not fully scrutinized and remains to be investigated.

At the classical level, the (0, 2) deformations of the heterotic non-linear sigma models

correspond to bundle deformations of heterotic E8×E8 gauge group away from the so-called
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standard embedding. However, it is generically expected that the world-sheet instanton

corrections in the (0, 2) non-linear sigma model break the conformal invariance and the

background does not make sense as a string world-sheet theory.

In other words, the world-sheet instanton effects will give rise to a non-perturbative

superpotential for such “would-be moduli” from the target space-time viewpoint.1 The

resulting generation of the non-perturbative superpotential would play a fundamental role

in investigating the moduli stabilization problem in heterotic compactifications. In this

sense, the study of the heterotic string theory focusing only on (2, 2) locus merely scratches

the whole surface of the heterotic landscape: the huge (0, 2) space remains un-explored.

From the world-sheet viewpoint, the (2, 2) locus is much easier to study. For example,

the celebrated mirror symmetry [5] (as generalized T-duality) plays a fundamental role in

understanding the topological (or BPS) nature of the (2, 2) string compactification, and it

has provided us a fruitful interconnection between mathematics and the string theory.

A similar situation may be expected in (0, 2) SCFTs. Indeed, there have been mathe-

matical as well as physical approaches to generalize the concept of mirror symmetry to (0, 2)

SCFTs [6–15]. In this paper, we would like to further investigate this (0, 2) mirror symmetry

from the generalization of the duality between the sine-Liouville theory and the 2D-black

hole, which is known as Fateev-Zamolodchikov-Zamolodchikov (FZZ) duality [16].2

One of the key features of the string theory is that it enables us to understand the

resolution of singularity from different perspectives. The FZZ duality is such an example,

relating the (winding) tachyon condensation and the geometric resolution of singularity as

a duality between non-compact Calabi-Yau space and non-compact Gepner models. It has

been noticed [18] that indeed the (2, 2) version of the FZZ duality may be understood as

a mirror symmetry, and this idea has led to the proof of the duality.

In this paper, we study the (0, 2) version of the FZZ duality. Here, again, the world-

sheet non-perturbative effects play an important role, and a possible structure of the confor-

mal gauge bundle deformations crucially depends on the form of the instanton corrections.

We will further give a geometric interpretation of the duality as deformations of the vector

bundle moduli in non-compact Calabi-Yau space. The non-compact Calabi-Yau space is

a clean setup to study the localized structure of the string theory, where the gravity is

decoupled from the localized degrees of freedom. We hope that our study will become a

first step to understand the local mirror symmetry of the non-compact Calabi-Yau space

with non-trivial gauge bundle deformations.

The organization of the rest of the paper is as follows. In section 2, we briefly review

(0, 2) superspace and superfields to establish our notation. In section 3, we provide some

basic aspects of (0, 2) mirror symmetry from the world-sheet viewpoint. In section 4, we

construct an example of (0, 2) non-compact mirror symmetry as a (0, 2) version of the FZZ

duality, which turns out to be an irrelevant deformation. In section 5, we show an example

with the non-trivial vector bundle deformation even as a CFT. In section 6, we interpret

1Under certain conditions [1], the instanton corrections vanish, sometimes due to seemingly miraculous

cancellation [2]. In this paper, we focus on the gauged linear sigma model (GLSM) construction, where it

is known that the world-sheet instanton effects do not break the conformal invariance [3, 4].
2See [17] for a review about the Liouville field theory and related topics.
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our world-sheet results from the space-time geometric viewpoint. In section 7, we conclude

our paper with some discussions. We dedicated two appendices to review relevant aspects

of SL(2,R)/U(1) Kazama-Suzuki coset model and N = 2 Liouville theory.

2 (0, 2) superspace, (0, 2) superfield

In this section, we establish our convention for (0, 2) supersymmetry in two-dimension with

(0, 2) superspace and (0, 2) superfields. Some useful references are [11, 19].

(0, 2) supersymmetry in two-dimension3 is generated by two fermionic supercharges

Q+, Q̄+ = Q†
+ together with bosonic generators: Hamiltonian H, momentum P , and

rotation M and (possibly4) U(1) R-symmetry F+. The commutation relation is

Q2
+ =Q̄2

+ = 0 , {Q+, Q̄+} =2(H − P ) ,

[M,Q+] = −Q+ , [M, Q̄+] = − Q̄+ ,

[F+, Q+] = −Q+ , [F+, Q̄+] = + Q̄+ (2.1)

with obvious commutation relations for Poincare symmetry.

It is useful to use the (0, 2) superspace (y+, y−, θ+, θ̄+) to construct supersymmetric

Lagrangian. The superderivatives are defined as

D+ =
∂

∂θ+
− iθ̄+∂+ , D̄+ = − ∂

∂θ̄+
+ iθ+∂+ , (2.2)

which satisfy

{D+,D+} = {D̄+, D̄+} = 0 , {D̄+,D+} = 2i∂+ . (2.3)

2.1 Chiral multiplet

A chiral superfield is defined by the condition D̄+Φ = 0. In the component form, it contains

a complex scalar φ(y) and a complex Weyl fermion ψ(y) as

Φ = φ(y) +
√

2θ+ψ+(y) − iθ+θ̄+∂+φ(y) . (2.4)

The free action is given by5

S = − i

2

∫

d2yd2θΦ̄∂−Φ

=

∫

d2y
(

−∂µφ̄∂µφ+ iψ̄+∂−ψ+

)

(2.5)

where Φ̄ is an anti-chiral superfield (complex conjugate of Φ) satisfying D+Φ̄ = 0.

3Our convention is that left-moving = holomorphic: f(x − t) = f(z), and right-moving = anti-

holomorphic: g(x+ t) = g(z̄). In heterotic string theory, the right-mover is supersymmetric in our conven-

tion.
4In (0, 2) superconformal theories, the U(1) R-symmetry is necessary.
5Our convention is

R

d2θ = ∂

∂θ̄+

∂

∂θ+ .
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2.2 Fermi multiplet

Fermi multiplet satisfies the condition

D̄+Γ =
√

2E , (2.6)

where E satisfies

D̄+E = 0 . (2.7)

The component expansion of the fermi multiplet Γ is given by

Γ = ψ− −
√

2θ+G− iθ+θ̄+∂+ψ− −
√

2θ̄+E , (2.8)

where ψ− is a complex Weyl fermion and G is an auxiliary field. The simple action with a

conventional kinetic term is given by

S = −1

2

∫

d2yd2θΓ̄Γ

=

∫

d2y

(

iψ̄−∂+ψ− + |G|2 − |E|2 − ψ̄−
∂E

∂φi
ψ+i − ψ̄+i

∂Ē

∂φ̄i
ψ−

)

, (2.9)

where we have assumed that E is a holomorphic function of chiral superfields Φi. (2, 2)

chiral multiplet is decomposed into one (0, 2) chiral multiplet and one fermi multiplet.

Furthermore, we can add superpotential terms. By definition, it is given by an inte-

gration over half the superspace:

S = − 1√
2

∫

d2ydθ+ΓaJ
a|θ̄+=0 − h.c.

= −
∫

d2y

(

GaJ
a + ψ−aψ+i

∂Ja

∂φi

)

+ h.c. (2.10)

with a holomorphic function Ja(Φ), where the (0, 2) supersymmetry requires EaJ
a = 0.

When E = 0 and Ja = ∂aW (in addition to the canonical kinetic term as above), we have

an enhanced (2, 2) supersymmetry.

2.3 Vector multiplet

Next we study U(1) gauge multiplet. We define covariant superderivatives by D+ =

e−ΨD+e
Ψ and D̄+ = eΨ̄D̄+e

−Ψ̄. The connection Ψ has a gauge transformation

δΨ = iΛ

δΨ̄ = −iΛ̄, (2.11)

where Λ is a chiral superfield (i.e. D̄+Λ = 0). We can easily see

D2
+ = D̄2

+ = 0 , {D+, D̄+} = 2i(D0 + D1) . (2.12)

We can use the gauge invariance to impose the Wess-Zumino gauge condition6

Ψ + Ψ̄ = θ+θ̄+(A+) , (2.13)

6As we will see, only the combination Ψ + Ψ̄ appears in the action.
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which is equivalent to

D0 + D1 = ∂+ −D+D̄+(Ψ + Ψ̄) = ∂+ + iA+

D+ =
∂

∂θ+
− iθ̄+(D0 + D1)

D̄+ = − ∂

∂θ̄+
+ iθ+(D0 + D1) , (2.14)

where A+ is the right-moving connection.

The left-moving connection is independent of Ψ and defined by a (real valued) vector

superfield V as

V = A− −
√

2iθ+λ̄− −
√

2iθ̄+λ− + 2θ+θ̄+D (2.15)

so that

D0 −D1 = ∂− + iV , (2.16)

where A− is the left-moving connection and λ− is the left-moving gaugino while D is an

auxiliary field. The connection V has the gauge transformation

δV = ∂−(Λ + Λ̄) . (2.17)

The gauge invariant field strength is defined by

Υ = D̄+(∂−(Ψ + Ψ̄) + iV )

= −(
√

2λ− − i2θ+(D − iF01) −
√

2iθ+θ̄+∂+λ−) . (2.18)

The conventional kinetic term is given by

S = − 1

8e2

∫

d2yd2θῩΥ

=
1

2e2

∫

d2y
(

F 2
01 + iλ̄−∂+λ− +D2

)

. (2.19)

One can also introduce the FI term

SFI =
t

4

∫

d2ydθ+Υ|θ̄+=0 + h.c.

=
t

2

∫

d2y(F01 + iD) + h.c. . (2.20)

Finally, the right handed gaugino is not in the gauge multiplet but belongs to a chiral

multiplet as

Σ = σ +
√

2θ+λ+ − iθ+θ̄+∂+σ . (2.21)

(2, 2) supersymmetry demands Ea = QΣΦa with the conventional kinetic term for the

right-handed gaugino

S = − i

4e2

∫

d2yd2θΣ̄∂−Σ

=

∫

d2y
1

2e2
(−∂µσ̄∂µσ + iλ̄+∂−λ+) . (2.22)
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2.4 Gauge invariant matter

A chiral superfield (i.e. D̄+Φ = 0) with charge Q transforms as δΦ = e2iQΛΦ under the

gauge transformation. The invariant action should be

S = − i

2

∫

d2yd2θ
1

2

(

Φ̄e−2QΨ̄(2∂− + 2Q∂(Ψ − Ψ̄) − iV 2Q)e−2QΨΦ
)

= − i

2

∫

d2yd2θ
1

2

(

Φ̄e−2Q(Ψ+Ψ̄)∂−Φ − Φe−2Q(Ψ+Ψ̄)∂−Φ̄ − 2iQΦ̄e−2Q(Ψ+Ψ̄)V Φ
)

=

∫

d2y
(

−|Dµφ|2 + iψ̄+(D0 −D1)ψ+ − iQφ̄λ−ψ+ + iQφψ̄+λ̄− +QD|φ|2
)

, (2.23)

where the covariant derivative is Dµφ = (∂µ − iQAµ)φ.

Similarly for fermi superfield with charge Q (i.e. δΓ = e2iQΛΓ), we have the gauge

invariant action

S = −1

2

∫

d2yd2θΓ̄e−2Q(Ψ+Ψ̄)Γ

=

∫

d2y

(

iχ̄−(D0 +D1)χ− + |G|2 − |E|2 − χ̄−
∂E

∂φi
ψ+i − ψ̄+i

∂Ē

∂φ̄i
χ−

)

. (2.24)

For later purposes, we also study the axionic (shift) gauge symmetry, δP = 2iQΛ. The

invariant action is

S = − i

2

∫

d2yd2θ
1

2
(P + P̄ − 2Q(Ψ + Ψ̄))(∂−P − ∂−P̄ − i2QV )

=

∫

d2y
(

−|Dµp|2 + iχ̄+∂−χ+ +QD(p+ p̄) +Qiχ+λ− +Qiχ̄+λ̄−
)

, (2.25)

where Dµp = ∂µp− iQAµ.

3 Mirror duality

From the world-sheet theory viewpoint, the mirror symmetry can be understood as an

S-duality of the GLSM whose infrared limit corresponds to the non-linear sigma model

of the (mirror) geometry [11, 20]. In this section, we review the Abelian S-duality of the

GLSM and summarize the general aspects of the (0, 2) mirror symmetry from the world-

sheet perspective.

3.1 Perturbative duality for chiral multiplet

The idea to show Abelian S-duality is to transform the action into two different but equiv-

alent forms by changing the order of Gaussian integration of quadratic fields. We begin

with the following action
∫

d2yd2θ

[

− i

4
e2B−2Q(Ψ+Ψ̄)(−2QiV +2iA) − iF D̄+(∂−B+iA) + iFD+(∂−B−iA)

]

, (3.1)

where A and B are unconstrained real superfield, and F is an unconstrained Lagrange

multiplier fermi superfield. If we first integrate out F , we obtain

2B = π + π̄ 2iA = ∂−(π − π̄) , (3.2)

– 6 –
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where π is a chiral superfield. Then, after substituting back into the original action,

it becomes
∫

d2yd2θ − i

4
eπ+π̄−2Q(Ψ+Ψ̄)[∂−(π − π̄) − i2QV ] . (3.3)

Introducing Φ = eπ, we obtain the gauged action for a chiral multiplet in (2.23).

On the other hand, we can first integrate out A and B by introducing a chiral field
1
4Y = D̄+F , which gives

2B = +2Q(Ψ + Ψ̄) + log
Y + Ȳ

2
2iA = i2QV − ∂−(Y − Ȳ )

Y + Ȳ
. (3.4)

Inserting this into the action, we obtain

Sdual =
i

8

∫

d2yd2θ
(Y − Ȳ )∂−(Y + Ȳ )

(Y + Ȳ )
− i

4

∫

d2ydθ+QYΥ + h.c. . (3.5)

3.2 Dual for axion superfield

We begin with

∫

d2yd2θ− i

4
(2B − 2Q(Ψ+Ψ̄))(−2QiV +2iA) − iF D̄+(∂−B+iA) + iFD+(∂−B−iA) ,

(3.6)

Integrating out F gives

2B = π + π̄ 2iA = ∂−(π − π̄) , (3.7)

which result in
∫

d2yd2θ − i

4
(π + π̄ − 2Q(Ψ + Ψ̄))[∂−(π − π̄) − i2QV ] . (3.8)

This is the action for the axionic chiral multiplet.

On the other hand, if we first integrate out A and B with introducing a chiral superfield

YP as 1
2YP = D̄+F , we have

2B = 2Q(Ψ + Ψ̄) + YP + ȲP 2iA = i2QV − ∂−(YP − ȲP ) . (3.9)

Substituting back into the original action, we obtain

Sdual =
i

4

∫

d2yd2θ(YP − ȲP )∂−(YP + ȲP ) − i

2

∫

d2ydθ+QYPΥ + h.c. . (3.10)

3.3 Dual for fermi multiplet

The starting point is

∫

d2yd2θ − 1

2
N̄e−2Q(Ψ+Ψ̄)N + S(D̄+N −

√
2E) − S̄(D+N̄ +

√
2E) (3.11)

– 7 –
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with an unconstrained superfield S. Integrating out S first gives

D̄+N =
√

2E , (3.12)

which is solved by N = Γ. Then the action becomes

− 1

2

∫

d2yd2θΓ̄e−2Q(Ψ+Ψ̄)Γ . (3.13)

On the other hand, if one solves N first, then

D̄+S = −1

2
N̄e−2Q(Ψ+Ψ̄) . (3.14)

One can define a chiral superfield G = N̄e−2Q(Ψ+Ψ̄) so that D̄+G = 0, and the action

becomes

Sdual =

∫

d2yd2θ − 1

2
Ḡe2Q(Ψ+Ψ̄)G−

(
∫

d2ydθ+ 1√
2
GE + h.c.

)

. (3.15)

If one wants to dualize E(Φ) at the same time, we can first introduce a neutral superfield

F = GE and the action becomes

Sdual = −1

2

∫

d2yd2θ
F̄F

Ēe−2Q(Ψ+Ψ̄)E
−

(
∫

d2ydθ+ 1√
2
F + h.c.

)

, (3.16)

where we have to express Ēe−2Q(Ψ+Ψ̄)E in terms of the dual variable Y .

3.4 Non-perturbative superpotential

There exist additional contributions to the superpotential coming from non-perturbative

instanton (vortex) effects. For simplicity, and sufficiently for our purposes, we assume

Ea = ΣaaiΦi for chiral multiplets or EP = Σ for an axionic multiplet. The theory has a

vector R-symmetry (i.e. Q(θ) = −1): Q(Φi) = Q(P ) = Q(Σ) = 0, Q(Γ) = Q(ΓP ) = 1 and

Q(Υ) = −1. In the component form, we have7

ψ± → eiαψ±
χ± → eiαχ±
λ± → e−iαλ± (3.17)

There is also an axial R-symmetry: Q(Φ) = Q(P ) = 0, Q(Γ) = Q(ΓP ) = Q(Υ) = −1,

and Q(Σ) = −2. In the component form, we have

ψ± → e±iαψ±
χ± → e±iαχ±
σ → e−2iασ

λ± → e±iαλ±. (3.18)

7Throughout this paper, we stick to the convention ψ± denotes the fermion for linearly charged chiral

multiplet Φi (and Γi), while χ± denotes the fermion for axionic chiral multiplet P (and ΓP ).

– 8 –
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Without the axionic multiplet, the axial current is anomalous, but one could improve

the axial current by adding the gauge invariant quantity Aµ = ∂µ(ImP ) + QPAµ to can-

cel the anomaly.

The examination of the possible instanton configuration and the symmetry discussion

above constrain the form of the non-perturbative superpotential in the dual theory severely

(but not completely) [11, 18]. Under the axial symmetry, the dual field is shifted as

Yi → Yi−iα to realize the anomaly. The anomaly cancellation demands that YP transforms

as YP → YP + i
P

i Qi

2QP
α.

From the BPS nature of the superpotential and the above symmetry argument, the

non-perturbative superpotential takes the following general form:

Wnon−pert = (αiaFi + βaFP )e−Ya + (α̃iFi + β̃FP )e
2QP

P

i Qi
YP . (3.19)

In (2, 2) limit, βa = α̃i = β̃ = 0 [18]. It seems possible to repeat the argument given

in [18] to conclude this is also true for (0, 2) theory. First, we split the gauge symmetry

for Φi and P by U(1) and U(1)P . Then, there is no non-perturbative corrections for YP
because it is just a free massive vector theory. Now, one can freeze Σ−ΣP and Υ−ΥP by

tuning D-term couplings. The D-term cannot affect the superpotential term so this gives

vanishing α̃i and β.

This argument is not completely convincing, however, because we only have (0, 2)

supersymmetry and D-term dependent non-perturbative correction might appear. Fortu-

nately in our particular application with Ea = aaiΣΦi, since there is no vortex solution as-

sociated with P , one can argue that they must disappear exactly or at least can be absorbed

by the redefinition of other superpotential coefficients. We first note that after the duality,

gauge multiplets Σ and Υ are all massive and can be integrated out, giving the condition

YP = −
∑

i YiQi
2QP

(3.20)

and a similar linear relation for FP . Now, the effective superpotential for YP , if any, becomes

∼
∑

a

caFae
−

P

i YiQi
P

i Qi . (3.21)

If we have only one chiral field, then this term is the same as the non-perturbative superpo-

tential for Y , so one can absorb it. If we have many chiral fields, then such a term cannot

occur in the instanton computation because the BPS nature of the instanton computation

forbids such a fractional contribution.

4 Irrelevant (0, 2) deformation of N = 2 Liouville theory and its dual

In this section, we propose a first example of (0, 2) Liouville duality. It turns out that the

deformation is irrelevant in the far infrared regime.

– 9 –
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4.1 GLSM construction and low energy action

A GLSM realizing N = 2 SL(2,R)/U(1) supercoset model is given by one pair of a chiral

multiplet Φ and a fermi multiplet Γ together with one axion superfield ΦP and its fermi

partner ΓP [18]. The (2, 2) U(1) gauge multiplet is realized by one pair of the vector

multiplet (V,Ψ) and a neutral chiral multiplet Σ. The non-trivial (0, 2) deformation we

will consider here is given by taking

E = αY Σ

EY = βΣ , (4.1)

where α = β = 1 corresponds to the (2, 2) point.

The superfield action is given by

S = − i

2

∫

d2yd2θ
1

2

(

Φ̄e−2Ψ̄(2∂− + 2∂(Ψ − Ψ̄) − 2iV )e−2ΨΦ
)

− 1

2

∫

d2yd2θΓ̄e−2(Ψ+Ψ̄)Γ

− i

2

∫

d2yd2θ
k

4
(P + P̄ − 2(Ψ + Ψ̄))(∂−P̄ − ∂−P − i2V ) − k

4

∫

d2yd2θΓ̄PΓP

− i

4e2

∫

d2yd2θΣ̄∂−Σ − 1

8e2

∫

d2yd2θῩΥ . (4.2)

The corresponding component Lagrangian is given by

L = −Dµφ̄Dµφ+ iψ̄−(∂+ + iv+)ψ− +D|φ|2 + iψ̄+(∂− + iv−)ψ+

−|α|2|σ|2|φ|2 − αψ̄−σψ+ − ᾱψ̄+σ̄ψ− − iφ̄λ−ψ+ + iᾱφ̄λ+ψ− + iψ̄+λ̄−φ− iαψ̄−λ̄+φ

+
k

2
(−(∂µp− ivµ)(∂

µp̄+ ivµ) + iχ̄−∂+χ− + iχ̄+∂−χ+ +D(p+ p̄)

−|β|2|σ|2 + iχ+λ− − iβ̄χ−λ+ + iχ̄+λ̄− − iβχ̄−λ̄+

)

+
1

2e2
(−∂µσ̄∂µσ + iλ̄−∂+λ− + iλ̄+∂−λ+ + v2

01 +D2) . (4.3)

At low energy, one can first integrate out Σ multiplet. Integrating out σ gives four-

fermi interaction

− |α|2ψ̄−ψ̄+ψ+ψ−
k
2 |β|2 + α2|φ|2

. (4.4)

Furthermore, integrating out gauginos λ± yields the relation

φ̄ψ+ = −k
2
χ+

ᾱ

β̄
φ̄ψ− = −k

2
χ− . (4.5)

We can now choose the gauge Imp=0, and solve the D-term condition as |φ|2 =−kRep.

The effective low energy dynamics for the remaining degrees of freedom is given by (0, 2)

non-linear sigma model for (φ,ψ±). The bosonic part of the Lagrangian is given by

LB = − ∂µφ̄∂
µφ− 1

2k
∂µφ∂

µφφ̄2 − 1

k
∂µφ̄∂

µφ|φ|2 − 1

2k
∂µφ̄∂

µφ̄φ2

− 1

4

∂µφ∂
µφφ̄2

k
2 + |φ|2

− 1

4

∂µφ̄∂
µφ̄φ2

k
2 + |φ|2

+
1

2

∂µφ∂
µφ̄|φ|2

k
2 + |φ|2

. (4.6)
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The bosonic part of the Lagrangian here does not depend on the deformation parameters

α and β and it describes the sigma model with the target-space metric8

ds2 =

(

1 +
r2

k

)

dr2 +
dθ2

(1 + r2

k )
, (4.7)

where we have introduced new coordinate φ = r√
2
eiθ [18].

The fermionic part of the Lagrangian, on the contrary, shows the effect of (0, 2) defor-

mation. It is given by

LF =iψ̄−∂+ψ− + iψ̄+∂−ψ+ +
ik

2
χ̄−∂+χ− +

ik

2
χ̄+∂−χ+

+
ψ̄−ψ−
k
2 + |φ|2

(

i

2
φ∂+φ̄− i

2
φ̄∂+φ

)

+
ψ̄+ψ+

k
2 + |φ|2

(

i

2
φ∂−φ̄− i

2
φ̄∂−φ

)

− 1
k
2 + |φ|2

(ψ̄−ψ−ψ̄+ψ+) − |α|2ψ̄−ψ̄+ψ+ψ−
k
2 |β|2 + |α|2|φ|2

, (4.8)

where we have to substitute (4.5) to remove χ±. Apart from the four-fermi term, the (0, 2)

deformation comes only from this substitution, so the right-mover ψ+ has the Riemann

connection compatible with the metric (4.7) as is again clear from the fact that the right-

moving part is not deformed from the (2, 2) locus. On the other hand, the left-moving

fermion ψ− has a deformed connection corresponding to the non-trivial deformation of the

gauge bundle away from the (2, 2) point: V = TM . After introducing the canonically

normalized fermion as ψ− =
ψ̃

(0)
−

r

1+ 2
k

α2

β2 |φ|2
, the first order perturbation in ǫ = 1 − |α|2

|β|2 gives

the deformation of the gauge bundle

δA = − i

k
ǫ
(φdφ̄− φ̄dφ)

1 + 2
k |φ|2

. (4.9)

The four-fermi interaction gives the field strength for the deformed gauge bundle F .

δF = −2
i
k ǫdφdφ̄

1 + 2
k |φ|2

+ · · · (4.10)

where ellipses represent higher order O(1/k, ǫ) corrections.

4.2 Further renormalization

The (0, 2) sigma model coupled with the non-trivial gauge bundle obtained in this way is

classically a conformal field theory, but it is not quantum mechanically at the one-loop

order. First of all, the metric (4.7) is not Ricci flat, so even when α = β (i.e. (2, 2) point),

there is a non-trivial renormalization to make it conformal. It has been discussed in [18], at

(2, 2) point, the fixed point is given by N = 2 SL(2,R)/U(1) Kazama-Suzuki coset model.

The metric is given by the two-dimensional black hole [21]

ds2 = k(dρ2 + tanh2 ρdθ2) , (4.11)

8The metric (4.6) does not look like Hermitian, but actually it is even Kahler by an appropriate choice

of the coordinate as is clear from the fact that it is equivalent to the undeformed metric derived from (2, 2)

supersymmetry, where the Kahler structure is automatic.
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with the dilaton gradient

Φ = −2 log cosh ρ . (4.12)

In particular, the generation of the dilaton gradient is crucial to maintain the conformal

invariance of the two-dimensional black hole background.

We here claim that the introduction of the (0, 2) deformation α 6= β is actually irrel-

evant for the IR physics, and the (2, 2) structure is recovered at the IR fixed point. Since

the deformation is smoothly connected with the (2, 2) conformal fixed point, the non-zero

deformation corresponds to an exactly marginal deformation of the N = 2 SL(2,R)/U(1)

coset model with preserving half amount of supersymmetry.

As we have reviewed in appendix (see also [18]), there is no such an exactly marginal

deformation of the N = 2 SL(2,R)/U(1) coset model [18] even if we relax the condition

of non-zero momentum.9 The only possible deformation descends from

J−
−1J̄

−
−1|j = 1〉+ ⊗ |0〉

J+
−1J̄

+
−1|j = 1〉− ⊗ |0〉 , (4.13)

or equivalently

[J+
0 J̃

+
0 |j =

k

2
〉+ ⊗ ψ− 1

2

¯̃
ψ− 1

2
|0〉]w=−1

[J−
0 J̃

−
0 |j =

k

2
〉− ⊗ ψ̄− 1

2
ψ̃− 1

2
|0〉]w=1 (4.14)

from the spectral flow isomorphism in the parent SL(2,R) WZNW model. These are

actually (2, 2) deformations (which are furthermore almost trivial, corresponding to renor-

malization of the N = 2 cosmological constant in the dual theory).

Thus, we conclude that there is no non-trivial exactly marginal (0, 2) deformation

for the N = 2 SL(2,R)/U(1) coset model, and the deformation introduced by α 6= β is

irrelevant. This can be also seen from the dual Liouville description as we will see shortly.

4.3 Dual theory

The perturbative dual theory is obtained from the prescription reviewed in section 3. The

kinetic term is given by

L =

∫

d2θ

[

i

8

Y − Ȳ

Y + Ȳ
∂−(Y + Ȳ ) +

i

k
ȲP∂−YP − F̄F

Y + Ȳ
− 1

k
F̄PFP

]

, (4.15)

whereas the perturbative superpotential term is given by

∫

dθ+

(

− iΥ
4

(Y + 2YP ) + α
Σ√
2
F + β

Σ√
2
FP

)

. (4.16)

9Here, we only focus on the deformation possible for any non-rational level k because we are interested

in the semiclassical deformation which is obtainable in the k → ∞ limit of the non-linear sigma model. For

specific values of k, there could be non-trivial deformation, which we would not discuss any further.

– 12 –



J
H
E
P
0
3
(
2
0
0
9
)
0
6
2

Furthermore, the non-perturbative superpotential term can be generated10

µ

∫

dθ+Fe−Y (4.17)

from the instanton corrections.

In order to investigate the effective low energy action, one can integrate out gauge

multiplet to obtain the relation

Y = −2YP F = −β
α
FP . (4.18)

For a large real part of Y , the effective Lagrangian is given by

L =

∫

d2θ
i

2

1

2k
Ȳ ∂−Y − |α|2

|β|2k F̄F −
(

∫

dθ+µFe−Y + h.c.

)

. (4.19)

The leading order action preserves (2, 2) supersymmetry. This is broken by difference of the

kinetic term between the bosonic field Y and fermionic field F for a smaller real part of Y .

Our claim is that in the IR limit, the theory flows to N = 2 Liouville theory. First of

all, we see that the superpotential term is not renormalized, and (0, 2) deformations only

appear in the kinetic term. Since N = 2 Liouville theory, as in N = 2 SL(2,R)/U(1) coset

model, does not have any supersymmetric marginal deformation, the (0, 2) deformations

should vanish at the conformal fixed point. In particular, the renormalization will generate

a linear dilaton term
∫

d2z
√
gQ2 RReY , which is necessary for conformal invariance of N = 2

Liouville theory. Note that the background charge Q = 2
k is determined so that the N = 2

Liouville potential
∫

dθ+µFe−Y is the marginal deformation.

Let us discuss possible holomorphic (hence protected) F-term deformation of the N = 2

Liouville theory. An obvious deformation is the change of the N = 2 Liouville cosmological

constant. This corresponds to the (2, 2) chiral deformation and it is dual to the marginal

deformation (4.13). The non-trivial F-term deformation is either given by the superpo-

tential or non-trivial auxiliary field E in the fermi multiplet. However, since the N = 2

Liouville theory only has one pair of chiral and fermi multiplet, the constraint EJ = 0

demands either E = 0 or J = 0, and as long as we keep N = 2 Liouville potential term,

non-trivial E deformation is impossible.11 Therefore, we can conclude that there is no

holomorphic F-term deformation of the N = 2 Liouville field theory except for the change

of the cosmological constant.

5 Marginal (0, 2) deformation of two N = 2 Liouville theories and its

dual

In this section, we present an example of marginal (0, 2) deformation of non-compact

Calabi-Yau space. For this purpose, we need two copies of N = 2 Liouville sector. The

resultant theory has a non-trivial gauge bundle deformation from the (2, 2) locus as a

conformal field theory.

10As discussed before, the potentially allowed term FP e
−

1
2

YP can be absorbed by a redefinition of µ.
11If we turned off the N = 2 Liouville potential, the non-trivial E = e−Y deformation would be possible.

However, this deformation preserves (2, 2) supersymmetry by renaming of the fermion and redefinition of

the R-charge.

– 13 –



J
H
E
P
0
3
(
2
0
0
9
)
0
6
2

5.1 GLSM construction

We begin with the two copies of (generically different level k and k̃) GLSM (Φ, P , Γ, ΓP ,

Υ, Σ) and (Φ̃, P̃ , Γ̃, Γ̃P , Υ̃, Σ̃). The two systems are interacting through the choice of the

auxiliary field

E = ΣΦ + ǫ1Σ̃Φ

EP = Σ + ǫ2Σ̃

Ẽ = Σ̃Φ̃ + ǫ′1ΣΦ̃

ẼP = Σ̃ + ǫ′2Σ (5.1)

To obtain the exact dual superpotential without ambiguity, we restrict ourselves to the

particular case with ǫ′1 = ǫ′2 = 0 (see a discussion in the next subsection).

The component form of the Lagrangian is given by

L = −Dµφ̄Dµφ+ iψ̄−D+ψ− + iψ̄+D−ψ+ +D|φ|2 − |σφ+ ǫ1σ̃φ|2

− ψ̄−σψ+ − σ̄+σ̄ψ− − ǫ1ψ̄−σ̃ψ+ − ǫ1ψ̄+
¯̃σψ−

− iφ̄λ−ψ+ + iφ̄λ+ψ− + iψ̄+λ̄−φ− iψ̄−λ̄+φ+ ǫ1iφ̄λ̃+ψ− − ǫ1iψ̄−
¯̃λ+φ

+
k

2

(

−Dµp̄Dµp+ iχ̄−∂+χ− + iχ̄+∂−χ+ +D(p+ p̄) − |σ + ǫ2σ̃|2

+ iχ−λ− + iχ̄+λ̄− − iχ−λ+ − iχ̄−λ̄+ − iǫ2χ−λ̃+ − iǫ2χ̄−
¯̃
λ+

)

−Dµ ¯̃
φDµφ̃+ i

¯̃
ψ−D+ψ̃− + D̃|φ̃|2 + i

¯̃
ψ+D−ψ̃+

− |σ̃|2|φ̃|2 − ¯̃
ψ−σ̃ψ̃+ − ¯̃

ψ+
¯̃σψ̃− − i

¯̃
φλ̃−ψ̃+ + i

¯̃
φλ̃+ψ̃− + i

¯̃
ψ+

¯̃
λ−φ̃− i

¯̃
ψ−

¯̃
λ+φ̃

+
k̃

2

(

−(Dµ
¯̃p)(Dµp̃) + i ¯̃χ−∂+χ̃− + i ¯̃χ+∂−χ+ + D̃(p̃+ ¯̃p)

−|σ̃|2 + iχ̃+λ̃− − iχ̃−λ̃+ +i ¯̃χ+
¯̃λ− − i ¯̃χ−

¯̃λ+

)

+
1

2e2
(−∂µσ̄∂µσ + iλ̄−∂+λ− + iλ̄+∂−λ+ + v2

01 +D2)

+
1

2ẽ2
(−∂µ ¯̃σ∂µσ̃ + i

¯̃
λ−∂+λ̃− + i

¯̃
λ+∂−λ̃+ + ṽ2

01 + D̃2) . (5.2)

To obtain the low energy effective action, we integrate out massive gauge multiplet Σ,
Σ̃ first, which gives rise to the four-fermi interaction

k
2
(ǫ1−ǫ2)(ψ̄−ψ+

¯̃ψ+ψ̃− + ψ̄+ψ−
¯̃ψ−ψ̃+) + ¯̃ψ−ψ̃+

¯̃ψ+ψ̃−(|φ|2+ k
2
) + ψ̄−ψ+ψ̄+ψ−(|φ̃|2 + (ǫ1 − ǫ2)

2 k
2

+ k̃
2
)

k
2
(|φ̃|2 + k̃

2
) + |φ|2(|φ̃|2 + (ǫ1−ǫ2)2

k
2
+ k̃

2
)

.

(5.3)

We can see that at (2, 2) point, where ǫ1 = ǫ2, the gauge bundle is just given by the sum

of the tangent bundle: V = TM1 ⊕ TM2, while there is a non-trivial mixing for general

deformation parameters as can be seen from non-zero ψ̄−ψ+
¯̃ψ+ψ̃− term. Integrating out
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gauginos λ± and λ̃± gives the relation

k

2
χ+ = −φ̄ψ+

k

2
χ− = −φ̄ψ−

k̃

2
χ̃+ = − ¯̃

φψ̃+

k̃

2
χ̃− = − ¯̃

φψ̃− − (ǫ1 − ǫ2)φ̄ψ− . (5.4)

Note that only the left-moving fermion is modified due to the deformation.

Furthermore, we can integrate out Υ, Υ̃ multiplets by fixing the gauge Imp = Imp̃ = 0,

and solving the D-term condition as |φ|2 = −kRep, |φ̃|2 = −k̃Rep̃. The bosonic part of

the action is not deformed and is given by the sigma model on two distinct manifolds:

ds2 =

(

1 +
r2

k

)

dr2 +
dθ2

(1 + r2

k )
+

(

1 +
r̃2

k̃

)

dr̃2 +
dθ̃2

(1 + r̃2

k̃
)
, (5.5)

where φ = r√
2
eiθ and φ̃ = r̃√

2
eiθ̃.

Similarly, the fermionic part of the action can be obtained as

LF =iψ̄−∂+ψ− + iψ̄+∂−ψ+ +
ik

2
χ̄−∂+χ− +

ik

2
χ̄+∂−χ+

+
ψ̄−ψ−
k
2 + |φ|2

(

i

2
φ∂+φ̄− i

2
φ̄∂+φ

)

+
ψ̄+ψ+
k
2 + |φ|2

(

i

2
φ∂−φ̄− i

2
φ̄∂−φ

)

− 1
k
2 + |φ|2

(ψ̄−ψ−ψ̄+ψ+)

+ i ¯̃ψ−∂+ψ̃− + i ¯̃ψ+∂−ψ̃+ +
ik̃

2
¯̃χ−∂+χ̃− +

ik̃

2
¯̃χ+∂−χ̃+

+
¯̃
ψ−ψ̃−
k̃
2 + |φ̃|2

(

i

2
φ̃∂+

¯̃
φ− i

2
¯̃
φ∂+φ̃

)

+
¯̃
ψ+ψ̃+

k̃
2 + |φ̃|2

(

i

2
φ̃∂−

¯̃
φ− i

2
¯̃
φ∂−φ̃

)

− 1
k̃
2 + |φ̃|2

(
¯̃
ψ−ψ̃−

¯̃
ψ+ψ̃+) (5.6)

together with the additional four-fermi term (5.3). We can see again that the gauge bundle

is only modified through the substitution of (5.4). In particular, connection for the right-

mover is not modified and is compatible with the Riemann metric as it should be.

The first order (off-diagonal) deformation of the gauge connection with respect to

ǫ1 − ǫ2 is

δA = (ǫ1 − ǫ2)
i

k

(φ̃dφ̄− φd
¯̃
φ)

√

1 + 2
k |φ|2

√

1 + 2
k̃
|φ̃|2

. (5.7)

Here, the connection is a deformation of the vector bundle for the second manifold from

the standard embedding V = TM2 (i.e. the introduction of non-trivial Aψ,ψ̃).
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Before turning on the (0, 2) deformation, the low energy effective field theory of the

GLSM is given by the direct sum of the two N = 2 SL(2,R)/U(1) coset models (with

level k and level k̃). The non-trivial (0, 2) deformation mixes the two coset models, and in

contrast to the example discussed in the last section, this induces a non-trivial deformation

even at the conformal fixed point.

In the low energy coset description, the deformation corresponds to

[J−
−1|j =

k

2
+ 1〉+ ⊗ |ψ− 1

2
|0〉]w=−1 ⊗ [J̃+

0 |j =
k̃

2
〉+ ⊗ | ¯̃ψ− 1

2
|0〉]w=−1 , (5.8)

which is (1, 1) deformation that preserves the (0, 2) supersymmetry.12 To see this, we

simply note that the right-mover is the same as the (2, 2) deformation, but the left-mover

breaks the half amount of supersymmetry. In the next section, we also find the correspond-

ing deformation in the dual N = 2 Liouville theory from the non-perturbative instanton

contributions to the dual superpotential.

5.2 Dual theory

The perturbative duality gives the following kinetic terms

L =

∫

d2θ

[

i

8

Y − Ȳ

Y + Ȳ
∂−(Y + Ȳ ) +

i

k
ȲP∂−YP − F̄F

Y + Ȳ
− 1

k
F̄PFP

]

+

∫

d2θ

[

i

8

Ỹ − ¯̃Y

Ỹ + ¯̃Y
∂−(Ỹ + ¯̃Y ) +

i

k̃

¯̃YP∂−ỸP −
¯̃FF̃

Ỹ + ¯̃Y
− 1

k̃

¯̃FP F̃P

]

(5.9)

together with the perturbative superpotential

W = − iΥ
4

(Y + 2YP ) − iΥ̃

4
(Ỹ + 2ỸP ) +

Σ(F + FP )√
2

+
Σ̃(F̃ + F̃P + ǫ1F + ǫ2FP )√

2
.(5.10)

The structure of the non-perturbative superpotential with general deformation

(ǫ1, ǫ2, ǫ̃1, ǫ̃2) would be

Wnon−pert = β1Fe
−Y + β2F̃ e

−Y + β̃1Fe
−Ỹ + β̃2e

−Ỹ , (5.11)

where we have assumed that there is no contribution from the axion multiplets. At (2, 2)

point, where ǫi = ǫ̃i, we have β1 = β̃2 = µ, β2 = β̃1 = 0. To study the deformation further,

we introduce the following (spurious) symmetry: Q(Σ) = k, Q(Σ̃) = k̃, under which the

deformation parameters are charged withQ(ǫ1) = Q(ǫ2) = k−k̃, andQ(ǫ′1) = Q(ǫ′2) = k̃−k.
Under the symmetry, ǫ1ǫ

′
1, ǫ1ǫ

′
2, ǫ2ǫ

′
1, ǫ2ǫ

′
2 are not charged, so arbitrary powers of these

combination could appear in the dual action. To obtain unambiguous dual action, we have

assumed ǫ′1 = ǫ′2 = 0.

Now, in the dual variable, the spurious symmetry gives Q(F ) = −k and F̃ = −k̃.
Furthermore, since the (2, 2) dual action should be invariant, we have Q(e−Y ) = k and

Q(e−Ỹ ) = k̃. From the invariance of the dual action, we can read the charge of dual

12The ˜ notation here has a double meaning: the one is the right-mover and the other is the second

SL(2,R)/U(1) coset with level k̃.
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parameter Q(β1) = Q(β̃2) = 0, Q(β2) = k̃−k, and Q(β̃1) = k− k̃. The continuity at ǫi = 0

uniquely determines the ǫi dependence on β: β1 = µ, β2 = 0, β̃1 = a(ǫ1 − ǫ2), β̃2 = µ̃.

Therefore, the dual superpotential is finally given by

Wnon−pert = µFe−Y + a(ǫ1 − ǫ2)Fe
−Ỹ + µ̃F̃ e−Ỹ . (5.12)

Note that proportionality with ǫ1 − ǫ2 is consistent with vanishing coefficient at (2, 2)

point. Note that even if this term had not arise from the instanton effect, it would appear

effectively after integrating out massive fields as we will see.

To study the low-energy physics, we integrate out the massive gauge multiplets, giving

the constraint

YP = −1

2
Y ỸP = −1

2
Ỹ

FP = −F F̃P = −F̃ − (ǫ1 − ǫ2)F . (5.13)

In order to obtain a canonical kinetic term for large ReỸ , we redefine F̃ + (ǫ1 − ǫ2)F → F̃ .

Then, we have the effective kinetic term (for large ReỸ )

L =

∫

d2θ
i

4k
Ȳ ∂−Y − 1

k
F̄F +

i

4k̃

¯̃Y ∂−Ỹ − 1

k̃

¯̃FF̃ , (5.14)

with the effective superpotential

Wnon−pert = µFe−Y + ã(ǫ1 − ǫ2)Fe
−Ỹ + µ̃F̃ e−Ỹ , (5.15)

where ã is shifted from a due to the redefinition F̃ +(ǫ1− ǫ2)F → F̃ just mentioned above.

This is the final form of our proposed dual action describing the (0, 2) deformation of the

SL(2,R)/U(1) coset models. The new (0, 2) Liouville interaction W = ã(ǫ1− ǫ2)Fe−Ỹ just

corresponds to (5.8).

To make the story complete, let us discuss possible F -term (holomorphic) deforma-

tions of two N = 2 Liouville theories. (2, 2) deformation should be given by the (2, 2)

superpotential W(2,2) = enb1S1+mb2S2. The compactification of the imaginary part of the

Liouville field13 S1 and S2 suggest that n and m should be integers. On the other hand,

the marginality condition gives

n+m = 1 , (5.16)

so there is no non-trivial solution except for the original N = 2 Liouville potential (n,m) =

(1, 0) or (0, 1) due to the unitarity constraint.

(0, 2) deformation comes from changing the superpotential by Ja or changing the

auxiliary field for the fermi multiplet by Ea. A Similar argument above shows that the

possible (0, 2) deformation from the (0, 2) superpotential (we decompose the (2, 2) chiral

mulitiplet S into a (0, 2) chiral multiplet Φ and a Fermi multiplet F ) is given by

F2e
b1Φ1 , F1e

b2Φ2 , (5.17)

13From the purely N = 2 Liouville theory viewpoint, this is not necessary at all. However, the duality

to SL(2,R)/U(1) coset model demands the quantization, and we only focus on these cases.
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which is just the dual for the deformation studied in section 4.14 Any other dual operators

violate unitarity.

If we turned off the (0, 2) deformation (5.17) from the superpotential, it would seem

possible to introduce non-trivial Ea deformations. Ea should satisfy the supersymme-

try condition

E1µ1e
b1Φ1 + E2µ2e

b2Φ2 = 0 . (5.18)

Furthermore, the marginality condition and the quantization of the Liouville exponent

uniquely fixes Ea as

E1 = ǫµ2e
b2Φ2 , E2 = −ǫµ1e

b1Φ1 . (5.19)

However, it is not difficult to see that all the induced interaction such as

δL = −ǫµ2b2χ̄−,1ψ+,2e
b2Φ2 + ǫµ1b1χ̄−,2ψ+,1e

b1Φ1 + h.c. (5.20)

is trivially removed by the field redefinition of the right hand fermions

χ−,1 → χ−,1 + ǫχ̄−,2

χ−,2 → χ−,2 − ǫχ̄−,1 . (5.21)

Thus, we conclude that there is no non-trivial F -term deformation of the two N = 2

Liouville theories (for general k and k̃) except for the ones discussed in this section.

6 Geometric interpretation

In this section, we give geometric interpretations of the duality so far obtained in previous

sections.

6.1 N = 2 Liouville theory and non-compact Calabi-Yau

The N = 2 Liouville theory has geometrical interpretations as non-compact Gepner model

constructions of the non-compact Calabi-Yau spaces (see e.g. [25, 26]). A classical example

of the non-compact Gepner model constructions would be Ghoshal-Vafa duality between

N = 2 Liouville theory (N = 2 SL(2,R)/U(1) coset model) at k = 1 and the deformed

conifold background [23]. We have seen in section 4 that the non-trivial vector bundle

deformation of the heterotic string on the deformed conifold cannot be studied from the

simple (0, 2) deformation of the GLSM.

In section 5, in contrast, we studied non-trivial (0, 2) deformation of two N = 2

Liouville theories, which presumably corresponds to deformations of the gauge bundle

moduli on the dual non-compact Calabi-Yau spaces. We can embed these theories in string

theory as a non-compact Gepner construction. We recall that the criticality condition of

the string theory demands
(

1 +
2

k

)

+

(

1 +
2

k̃

)

= n , (6.1)

14A similar supersymmetry breaking fermionic deformation was studied in [22] in the cosmological context.
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for Calabi-Yau n-fold. The simplest example would be k = k̃ = 4 for Calabi-Yau 3-fold

which describes ALE(A1) fibration over CP1.

To discuss the corresponding geometry further, we recall the Calabi-Yau/Landau-

Ginzburg correspondence: the Calabi-Yau n-fold defined by

Xr1
1 + · · · +X

rn+2

n+2 = 0, in WCPn+1

(

1

r1
, . . . ,

1

rn+2

)

(6.2)

with
∑n+2

i=1
1
ri

= 1 is equivalent to the Landau-Ginzburg orbifold with the (2, 2) superpoten-

tial W(2,2)(Xi) = Xr1
1 + · · ·+X

rn+2

n+2 . As we will see, our case with non-compact Calabi-Yau

space requires that some of the power ri be negative, and the Landau-Ginzburg description

is rather formal at this stage [24–27].

The non-compact version of the Calabi-Yau/Landau-Ginzburg correspondence goes

in the following way. Let us consider the Landau-Ginzburg model with the (2, 2)

superpotential

W = X2
1 +X2

2 +X2
3 + Y −k

1 + Y −k̃
2 , (6.3)

where 1
k + 1

k̃
= 1

2 , corresponding to a non-compact Calabi-Yau 3-fold

X2
1 +X2

2 +X2
3 + Y −k

1 + Y −k̃
2 = 0 , in WCP4

(

kk̃, kk̃, kk̃,−2k̃,−2k
)

. (6.4)

To make sense of the negative power in the superpotential and gain more geometrical

intuition of the target space, we introduce the Liouville coordinate [24]

Y −k
1 = e

−
q

k
2
Φ1 Y −k̃

2 = e−
q

k̃
2
Φ2 . (6.5)

The Jacobian of the path integral associated with this change of variables induces a linear

dilaton factor (see e.g. [28])

Φ = −
√

1

2k
ReΦ1 −

√

1

2k̃
ReΦ2 . (6.6)

Now the theory is well behaved as a sum of two N = 2 Liouville theories.

Similarly one can rewrite the superpotential as

W = e−nZ
(

eY/k1 + eY/k2 +X2
1 +X2

2 +X2
3

)

, (6.7)

and integrate out Z field, resulting in the geometry

eY/k1 + eY/k2 +X2
1 +X2

2 +X2
3 = 0 (6.8)

describing the ALE(A1) fibration over WCP1(k1, k2).

As a particular example, we take n = 4, k = k̃ = 2, which has a direct geometrical

construction studied in the literature. The model is given by two copies of ALE(A1)

space, or O(−2)⊕O(−2) bundle over CP1×CP1 with further vector bundle deformations.

Actually, the vector bundle deformation of this model can be analysed by using a different
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GLSM from us (without any axionic matter) as has been done in [11]. In their model, they

introduced U(1)1 × U(1)2 with two charge one chiral multiplets Φ1,Φ2 ( Φ̃2, Φ̃2 for U(1)2)

and charge −2 chiral multiplet P (and P̃2). After integrating out massive multiplets (dual of

Φi and Φ̃i), it is not difficult to see that our effective superpotential after duality completely

agrees with the one studied in [11]:15 the vector bundle deformation is described by the

two Liouville field theory with the (0, 2) superpotential W(0,2) = Fe−Y + F̃ e−Ỹ + ǫFe−Ỹ .

An important consequence of this construction is that one could (in principle) read

the geometric data of the vector bundle deformation from the parent GLSM corresponding

to our Liouville deformation. Mathematically, the vector bundle deformation in conven-

tional heterotic compactifications is described by H1(M,End(V )) and might be computed

explicitly from the GLSM. One problem, however, is that the classical GLSM does not

give a Calabi-Yau metric nor the vector bundle deformation consistent with the heterotic

equations of motion (hence it is not conformal at one-loop). The study of the renormal-

ization group equation would yield a conformal fixed point, but the actual computation is

cumbersome and furthermore we may still have to deal with non-perturbative effects. The

good point of our dual formulation based on the N = 2 Liouville theory (or SL(2,R)/U(1)

coset model) is that the conformal property is manifest and some important quantities are

not renormalized due to the holomorphic nature of the superpotential.

7 Discussion

In this paper, we have studied the mirror duality of the (0, 2) non-compact Calabi-Yau

space with non-trivial gauge bundle deformations. Our approach has been a composition

of the effective field theory analysis from the non-linear sigma model and the world-sheet

exact analysis based on the Liouville theory and coset model. The former has given us

the intuitive geometric understanding of the duality, while the latter knows exactly the

(ir-)relevance of the geometric deformation at the quantum level.

The FZZ duality itself can be seen as a duality between the tachyon condensation

(sine-Liouville phase) and the geometric resolution of singularity (2D black hole phase).

The world-sheet non-perturbative corrections show different aspects in each phase, but the

physics is the same if we quantize the system exactly. The world-sheet exact treatment

(solvability of the Liouville theory) here plays a significant role because the full quantum

corrections are under control. In this paper, we have only discussed the small perturbation

around the (2,2) background from the exact CFT viewpoint, but it would be very interesting

see if the solvability continues to hold away from the (2,2) point. Various techniques used

in the Liouville theory (see [17] for a review) may remain useful here.

15One should be careful, however, because the authors of [11] did a coordinate transformation to make the

Liouville directions compact and treated them as if it were a conventional Landau-Ginzburg model. The non-

compactness of the target space is not manifest in their approach and we believe that a physically suitable

coordinate involves Liouville directions as we have done. In addition, some of the instanton parameters were

not fixed in [11], and the consistency to our approach should give a constraint on their exact parameter map.
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A N = 2 SL(2, R)/ U(1) coset model

In this appendix, we review some basic aspects of N = 2 SL(2,R)/U(1) Kazama-Suzuki

coset model [31, 32]. We begin with the bosonic SL(2,R) WZNW model. It is generated

by the world-sheet current16

JaL =
∞

∑

n=−∞
Jane

iny− , JaR =
∞
∑

n=−∞
J̃ane

iny+ . (A.1)

The commutation relations are

[J3
n, J

3
m] = −kB

2
nδn+m,0

[J3
n, J

±
m] = ±J±

n+m

[J+
n , J

−
m] = −2J3

n+m + kBnδn+m,0 , (A.2)

where kB is the (bosonic) level of the current algebra.

The supersymmetric SL(2,R) WZNW model is described by bosonic SL(2,R) WZNW

model with kB = k + 2 with three free fermions.17 The fermion is charged under the total

SL(2,R) algebra with the commutation relation

[J
3(t)
0 , ψr] = − ψr , [J

3(t)
0 , ψ̄r] =ψ̄r

[J̃
3(t)
− , ψ̃r] =ψ̃r , [J̃

3(t)
0 ,

¯̃
ψr] = − ¯̃

ψr . (A.3)

In other worlds, the total SL(2,R) current is given by the sum of the bosonic part Ja(b)

and the fermionic part ψψ̄.

The Hilbert space of the supersymmetric SL(2,R) WZNW model is given by the direct

product of bosonic SL(2,R)k+2 WZNW model and the Fock space of the Dirac fermion.

A part of the former is obtained from the following representations of SL(2,R) as the

Kac-Moody primaries [27, 33]

1. D+
j : principal discrete representation with lowest weight (i.e. j3 ≡ m = j, j + 1, j +

2 · · · ) of spin j, where 1
2 < j < k+1

2 .

16When we talk about conformal field theories, we use˜ to denote the right-mover compared with -̃less

expression for the left-mover. We hope this will not be confusing.
17In the Kazama-Suzuki coset, only two fermions (= Dirac fermion) out of three, ψ = ψ1 + iψ2 and

ψ̄ = ψ1 − iψ2 are important. The other ψ3 would be eliminated through the coset construction.
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2. D−
j : principal discrete representation with highest weight (i.e. j3 ≡ m = −j,−j −

1,−j − 2 · · · ) of spin j, where 1
2 < j < k+1

2 .

3. Cαj : principal continuous representations with j = 1
2 + ip , p ∈ R≥0 and 0 ≤ α < 1

(j3 ≡ m = α,α ± 1, α± 2 · · · ).

We denote the condition 1
2 < j < k+1

2 for discrete representations as the unitarity condi-

tion [33]. The corresponding Kac-Moody primaries are denoted by D̂±
j and Ĉαj . We recall

Jan annihilate Kac-Moody primaries for all n > 0. They have the conformal weights

L0 = L̄0 = −j(j − 1)

kB − 2
. (A.4)

In addition, we include spectral flowed representations of these basic representa-

tions [33]. The spectral flow automorphism of the current algebra is obtained by Jan → Ĵan
with

Ĵ3
n = J3

n − kB
2
wδn,0 , Ĵ+

n = J+
n+w , Ĵ−

n = J−
n−w , (A.5)

where w ∈ Z is the amount of spectral flow. In particular, the quantum number of L0

and J3
0 changes as (h,m) → (h+wm− kBw

2

4 ,m− kBw/2). In the supersymmetric theory,

the spectral flow also acts on the Dirac fermion. It sends the fermion Fock space to itself.

For example

|0〉 → ψ̄−w+ 1
2
· · · ψ̄− 1

2
ψ̃−w+ 1

2
· · · ψ̃− 1

2
|0〉 , (A.6)

for w ≥ 1 under the spectral flow −w. Total quantum number, therefore is transformed as

J
3(t)
0 = m− kw

2
, J̃3

0 =m̃− kw

2

L0 = −j(j − 1)

k
+ wm− k

4
w2 , L̃0 = − j(j − 1)

k
+ wm̃− k

4
w2 . (A.7)

We note that the amount of the spectral flow should be the same both for the left-mover

and the right-mover.

In the coset theory, states are restricted by the gauging condition J
3(t)
0 + J̃

3(t)
0 = 0 and

J3
n = J̃3

n = 0 for n ≥ 0. We define the momentum quantum number18 by n ≡ J
3(b)
0 − J̃

3(b)
0 ,

where J
3(b)
0 is the bosonic part of the SL(2,R) generator J3

0 . Under the coset construction

of the Virasoro generator: T SL(2,R)/U(1) = T SL(2,R) − TU(1), we obtain, in particular,

L0 = −j(j − 1)

k
+

(m+ s)2

k
+
s2

2

L̄0 = −j(j − 1)

k
+

(m̄+ s̄)2

k
+
s̄2

2
, (A.8)

where m = n−kw
2 , and m̄ = −n+kw

2 for N = 2 primary operators (i.e. annihilated by

G+
r≥ 1

2
−s and G−

r≥ 1
2
+s

). Here s denotes the fermionic spin and s = 0 corresponds to the NS

18The momentum n is quantized: n ∈ Z.
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vacuum. Other coset states are created over these primary operators by acting J±, ψ and

ψ̄ oscillators.19 The spectrum of the N = 2 SL(2,R)/U(1) coset model can be also read

from the partition function. See e.g. [29, 30] for details.

The coset theory possesses an enhanced (2, 2) supersymmetry algebra. It is

generated by

Gr =

√

2

k

∑

n

ψr+nJ
+
−n

Ḡr =

√

2

k

∑

n

ψ̄r+nJ
−
−n

Jn =
1

k + 2
J3(b)
n +

1

2
J3(f)
n , (A.9)

for left-mover and

G̃r =

√

2

k

∑

n

ψ̃r+nJ̃
−
−n

˜̄Gr =

√

2

k

∑

n

¯̃
ψr+nJ̃

+
−n

J̃n =
1

k + 2
J̃3(b)
n +

1

2
J̃3(f)
n , (A.10)

for right-mover. The commutation relation is

[Lm, Gr] =
(m

2
− r

)

Gm+r

[Lm, Jn] = −nJm+n

{Gr, Ḡs} = 2Lr+s + (r − s)Jr+s +
c

3

(

r2 − 1

4

)

δr,−s

{Gr, Gs} = 0

[Jn, Gr] = Gr+n [Jn, Ḡr] = −Ḡr+n
[Jm, Jn] =

c

3
mδm,−n , (A.11)

where c = 3 + 6
k .

We turn to the statement made in the main text. The claim is there is no (0, 2)

supersymmetric marginal deformation of the N = 2 SL(2,R)/U(1) coset model. For this

purpose, we have to look for (1, 1) primary operators annihilated by half of the supercharge

up to total derivatives. We begin with discrete representations and their spectral flow

D̂+,w
j ⊗ D̂+,w

j . The (1, 1) condition becomes

L0 = −j(j − 1)

k
+

(n−kw2 + s)2

k
+
s2

2
+N = 1

L̄0 = −j(j − 1)

k
+

(−n+kw
2 + s̄)2

k
+
s̄2

2
+ N̄ = 1 , (A.12)

19As usual, J3, ψ3 oscillators and ghost oscillators practically do not contribute because they are projected

out by the BRST procedure of the gauging.
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where N, N̄ ∈ Z≥0 are contribution from oscillators. In addition, we have a highest

weight condition

m =
n− kw

2
= j + q

m̄ = −n+ kw

2
= j + q̄ (A.13)

with q, q̄ ∈ Z, where q counts number of J+
−n≤0 minus number of J−

−n<0 and similarly for q̄.

As in the main text, we require that this mass-shell condition apply for all k, which result

in four equations

−n
2
(2q + 1) − q(q + 1) + ns+ s2 = 0

w

2
(2q + 1) − sw +

s2

2
+N = 1

n

2
(2q + 1) − q(q + 1) − ns̄+ s̄2 = 0

w

2
(2q + 1) − s̄w +

s̄2

2
+ N̄ = 1 . (A.14)

We restrict ourselves to the case with NS states s, s̄ ∈ Z. In this case, furthermore,

we set s = s̄ = 0 and create fermionic states with explicit oscillators (counted by N, N̄ ∈
1
2Z≥0). It is easy to see that the condition reduces to the case n = 0 and q = q̄ = 0,−1

with ±w
2 +N = 1. The unitarity condition further sets w = 0,−1, recovering the marginal

deformation mentioned in the main text.

Let us also consider continuous representation and their spectral flow Ĉα,wj ⊗ Ĉα,wj . For

s = s̄ = 0, the mass-shell condition is

1

4k
+
p2

k
+
kw2

4
− nw +

n2

4k
+N = 1

1

4k
+
p2

k
+
kw2

4
+ nw +

n2

4k
+ N̄ = 1 , (A.15)

where j = 1
2 + ip. Again we are interested in states which is not affected by the small

change of k (especially in the large k limit), so we have to set w = 0 to satisfy the mass-

shell condition. Then for n = 0, we have

|j = 1/2 + i
√

k − 1/4, α = 0〉 ⊗ |0〉 (A.16)

and

J+
0 J̃

+
0 |j = 1/2 + i

√

k/2 − 1/4, α = 0〉 ⊗ ψ− 1
2

¯̃ψ− 1
2
|0〉 . (A.17)

Both of them do not preserve N = 2 supersymmetry (the latter series especially break

R-symmetry). Similar states exist for non-zero n as p =
√

k − (1 + n2)/4k or p =
√

k/2 − (1 + n2)/4k, example of which for n = 1 is

J−
0 |j = 1/2 + i

√

k − 1/2, α = 1/2〉 ⊗ |0〉 . (A.18)

However, neither of them preserve N = 2 supersymmetry, so they are not important for

our studies.
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B N = 2 Liouville theory

We present our conventional form of N = 2 Liouville action by using (2, 2) superfield as

(see [17] for details)

S =
1

4π

∫

d2zd4θSS̄ + µL

∫

d2zd2θebS + h.c. (B.1)

=
1

2π

∫

d2z∂φ∂̄φ+ ∂Y ∂̄Y + ψ̄+∂−ψ+ + ψ̄−∂+ψ−

+

∫

d2z
(

µb2ψ+ψ−e
b(φ+iY ) + µ̄b2ψ̄+ψ̄−e

b(φ−iY ) + π|µ|2b2 : eb(φ+iY ) :: eb(φ−iY ) :
)

,

where S = φ + iY + iθ+ψ− − iθ−ψ+ + · · · is a (2, 2) chiral superfield. The last term

π|µ|2b2 : eb(φ+iY ) :: eb(φ−iY ) : is a singular contact term and does not appear in the most

of the CFT computation. There is a further linear dilaton coupling
∫

d2z
√
gQRφ with

Q = 1
b . The central charge is c = 3 + 3

b2
, so the duality map is b2 = k

2 .

(2, 2) supersymmetry is generated by

T = −1

2
(∂Y )2 − 1

2
(∂φ)2 +

1

2n
∂2φ− 1

4
(ψ+∂ψ̄+ − ∂ψ+ψ̄+)

G = −1

2
ψ+(i∂Y + ∂φ) +

1

2b
∂ψ+

Ḡ = −1

2
ψ̄+(i∂Y − ∂φ) − 1

2b
∂ψ̄+

J =
1

2
ψ+ψ̄+ +

1

b
i∂Y (B.2)

and similarly for the right-mover.
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